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1. For some of the following exercises in this question, previous results
will be used to do future problems.
(a) The generating function is: 1 + x2 + x4 + x6 + ... = 1

1−x2

(b) The expanded generating function is (Call it F(x) to make it easier
to work with):

1 + 2x + 3x2 + 4x3 + ... = F (x)

x + 2x2 + 3x3 + ... = xF (x)

1 + x + x2 + ... = (1− x)(F (x))

1
(1− x)2

= F (x)

(c) The expanded generating function is:

1 + 3x + 6x2 + 10x3 + ... = F (x)

x + 3x2 + 6x3 + ... = x(F (x))

1 + 2x + 3x2 + ... = (1− x)F (x)

1
(1− x)3

= F (x)

(d) The expanded generating function is:

1 + 4x + 9x2 + 16x3 + ... = F (x)

x + 4x2 + 9x3 + 16x4 + ... = xF (x)

1 + 3x + 5x2 + 7x3 + ... = (1− x)(F (x))

x + 3x2 + 5x3 + ... = x(1− x)(F (x))

1 + 2x(1 + x + x2 + x3 + ...) = (1− x)2(F (x))
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F (x) =
1 + x

(1− x)3

(e) Expanding the generating function again...

1 + 8x + 27x2 + 64x3 + ... = F (x)

x + 8x2 + 27x3 + ... = xF (x)

1 + 7x + 19x2 + 37x3 + ... = (1− x)(F (x))

x + 7x2 + 19x3 + ... = x(1− x)(F (x))

1 + 6x(1 + 2x + 3x2 + 4x3 + 5x4 + ...) = (1− x)2(F (x))

F (x) =
1 + 4x + x2

(1− x)4

2. A problem like this requires careful consideration of the expanded
formula and the recursion that is given... The generating function
looks something like this:

a0 + a1x + a2x
2 + ... = F (x)

2a0x + 2a1x
2 + 2a2x

3 + ... = 2x(F (x))

a0 + x + x2 + x3 + ... = (1− 2x)(F (x))

When you subtract 2an from an+1 = 2an + 1, you get 1 which was the
motivation for multiplying the generating function by 2x instead of x.
Now, we plug in our value for a0 = 0 to get our final answer:

F (x) =
x

(1− 2x)(1− x)

3. Probably one of the most useful things you can do with generating
functions: going back to the formula of the recursion. We use a tech-
nique called partial fraction decomposition. I will walk through
it once in this problem and skip the technique in future problems and
just show the answer.

F (x) =
x

(1− 2x)(1− x)
=

A

1− x
+

B

1− 2x

Here, A and B are constants. The numerators of the partial fractions
is some sort of a polynomial that has one less degree than the de-
nominator. So for example if the denominator was a quadratic (See
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problem 5), then the numerator would be a linear polynomial of the
form Ax+B. Now, we multiply both sides to clear the denominator:

x = (1− 2x)A + B(1− x)

x = (A + B)− (2A + B)x

We know that the coefficients must be equal, so:

A + B = 0

−(2A + B) = 1

Solving we get that A = −1 and B = 1. So we know that the gener-
ating function is equal to:

1
1− 2x

− 1
1− x

Expanding both of the generating functions, we get that:

F (x) = (1 + 2x + 4x2 + 8x3 + ...)− (1 + x + x2 + x3 + x4 + ...)

So we know that the first term is the generating function for the se-
quence bn = 2n. The second term is the generating function for the
sequence cn = 1. So, the sequence we want to find the closed form of is
the difference of those two sequences, so we have that an = 2n−1. For
this particular problem, it probably would have been easier to com-
pute the first couple of terms and then guess at the formula. Then
we could have proved it using induction. That technique of guess and
check works when the formula is relatively simple, but for more compli-
cated sequences this technique becomes more desirable (see problems
5 and 12).

4. We’ll use the same technique as we did in the previous problem:

F (x) = a0 + a1x + a2x
2 + ...

(2x)(F (x)) = 2a0x + 2a1x
2 + 2a2x

3 + ...

(1− 2x)(F (x)) = a0 + x2 + 2x3 + 3x4 + 4x5 + ...

(1− 2x)(F (x)) = 1 + x2(1 + 2x + 3x2 + ...)

(1− 2x)(F (x)) = 1 +
x2

(1− x)2

F (x) =
2x2 − 2x + 1

(1− x)2(1− 2x)
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5. Using the partial fraction decomposition technique again, we see that:

F (x) =
2

1− 2x
− 1

(1− x)2

You might be wondering how the denominators are chosen. Some-
times, you need to take multiple tries to get a decomposition that
works and you can make sense out of it. As with a lot of other things
in math, choosing the denominators in the partial fraction decompo-
sition takes practice. From the decomposition:

F (x) = 2(1 + 2x + 4x2 + 8x3 + ...)− (1 + 2x + 3x2 + 4x3 + ...)

Examining the sequences that the generating functions correspond to
individually, we can see that the formulat that we want is:

an = 2n+1 − (n + 1) = 2n+1 − n− 1

6. We approach this problem just like we approached the problem that
we did in the notes. The answer is:

1
(1− x)(1− x5)(1− x10)(1− x25)(1− x50)

7. a) This can be done by calculating the x10 in the generating function.
In my opinion, this is one of those problems where generating functions
doesn’t serve you that well since it is the same as just brute forcing
the answer or using another approach. Anyways, you should get that
the answer is 6.
b) This is done just like Problem 6. The answer is:

1
(1− x)(1− x2)

8. In this problem, generating functions is one of the best way to do this
problem. So, let’s look at each part and find the generating functions
for each. Then we have proven that they are equal when we see that
the generating functions are equal.

So the first part is: the generating function for the number of partitions
of n into parts so that the largest of them is r. We know the generating

4



function for the number of partitions of n, and we want the number
of partitions up to r. So that is just the generating function:

r∏
n=1

(
1

1− xn
)

That is not quite right, because if you look at part that determines
the number of r’s chosen, we see that the generating function is:

1 + xr + x2r + x3r + ... =
1

1− xr

If we take the 1 from this generating function, then we don’t have r
in the corresponding partition! So, we’re not allowed to take 1 and we
must not include that option. The generating function thus becomes:

xr + x2r + x3r + ... =
xr

1− xr

So, the generating function for the first part is:

xr
r∏

n=1

(
1

1− xn
)

Now we just have to find the generating function for the second part
and we are done. So the number of partitions of any number n into
exactly r parts. Think about forming the partitition this way. First,
we make all of the r parts equal to 1, since they must all at least be 1.
Then, we make partitions normally and match terms. For concrete-
ness, lets look at an example. Say r = 3. First, we’ll start with the
partition 1+1+1. So if n = 5, we’ll look at a partition of n-r = 2. 2
= 1+1. We’ll add the first element of the original partition with the
first element of the partition of 2. Then the second elemtents will be
added, and so on. So we get that 2+2+1 is a partition of 5 into 3
parts. Then, we’ll count that. Giving 1 to each term is like multiply-
ing the generating function by xr. So we want the partitions of n-r
into r parts shifted by xr. So the generating function is:

xr
r∏

n=1

(
1

1− xn
)

Since the generating function for the first part is equal to the gener-
ating function for the second part, the two quantities are equal for all
n.
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9. a) Since all of the parts are distinct, we can’t take two of a part.
Therefore every generating function stops at 1 + xn.

∞∏
n=1

(1 + xn)

b)
∞∏

n=1

(
1

1− x2n−1
)

This is the same as finding the generating function for all partitions
except we’re only allowed to use the odd parts now.
c)

k∏
n=1

(
1

1− xn
)

This follows the same argument as the layout argument in the second
part of the previous problem. This time, we are laying out the first
partition 0+0+0+0+0...+0 (k times) and then counting the number
of partitions that we can place on top of that.
d)

xk
k∏

n=1

(
1

1− xk
)

e) Look at the number of ways of representing n as 2x with x being
an integer, and so on for the other two terms. Applying all of the
restrictions correctly, you should get:

1 + x7 + x14 + x21

(1− x2)(1− x3)

10. The number of partitions where each part is different is:

∞∏
n=1

(1 + xn)

This is the generating function because I can’t use more than 1 of each
number since it is into distinct partitions.

∞∏
n=1

(
1

1− x2n−1

)
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We want the regular generating function, but we don’t want the odd
terms.

So, to manipulate the generating functions to look like each other:

∞∏
n=1

(1 + xn)

= (1 + x)(1 + x2)(1 + x3)...

=
(1− x2)

1− x

(1− x4)
1− x2

(1− x6)
1− x3

+ ...

=
∞∏

n=1

(
1

1− x2n−1

)
We multiplied the original generating function by the conjugate to get
a denominator. Then we cancelled to get our answer.

11. So, we look at the generating function for the number of partitions of
a number.

p(n) =
∞∏

n=1

(
1

1− xn

)
To count the number of 1’s in the partition, we must replace the gen-
erating function for the number of 1’s in the partition (1 +x+x2 + ...)
with something else. If we think about what we are doing, then it
becomes clear what we need to replace it with. If we use the x0 term,
we want to count that 0 times. If we use the x1 we want to count that
1 time. If we use the x2 term, we want to count that 2 times. And so
on. Therefore, that generating function changes to:

0 + x + 2x2 + 3x3 + ... =
1

(1− x)2
=

x

1− x

1
1− x

So to fix the original function for the number of partitions of a number
to count the number of 1’s instead, we must multiply it by x

1−x . So
the generating function for that is:

x

1− x

∞∏
n=1

1
1− xn

Instead of counting the number of distinct terms of a partition, we will
count the number of partitions that 1 appears in. Then, we’ll count
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the number of partitions of n that 2 appears in. And so on. So, we’ll
do complementary counting to do that. We’ll count the number of
times that 1 does not appear and subtract it from the total number
of partitions of n to get the number of partitions of n that 1 does
appear in. Then, we’ll do this process for all n and add it up to get
our answer. So, we want to evaluate this:

∞∑
n=1

(
p(n)− p(n)

1
1−xn

)

=
∞∑

n=1

(p(n)xn)

= p(n)
∞∑

n=1

(xn)

=
x

1− x
p(n)

=
x

1− x

∞∏
n=1

(
1

1− xn

)
So, we have proven that those two generating functions are equal,
therefore we are done.

12. We can look at the number of polynomials by considering an analogous
question. How many ways are there of expressing n as a sum of powers
of 2, using each power of 2 a maximum of 3 times only? That is an
much easier generating function question:

(1 + x + x2 + x3)(1 + x2 + x4 + x6)(1 + x4 + x8 + x12)...

=
1− x4

1− x

1− x8

1− x2

1− x16

1− x4
...

=
1

(1− x)(1− x2)

=
−1

4x + 3
4

(1− x)2
+

1
4

1 + x

=
−x

4
(1+2x+3x2+...)+

3
4

(1+2x+3x2+...)+
1
4

(1−x+x2−x3+x4...)

Therefore an = n
2 + 3

4 + (−1)n

4
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13. Instead of 19, consider the sequence of the number of solutions for
all n. This is somewhat a partition problem. Now let us find the
generating function. I will organize my work as such. I will put the
term that we are concerned with on the left hand side of the equation,
and the generating function for the term on the right hand side.

a1 = 1 + x =
1− x2

1− x

a2 = 1 + x + x2 =
1− x3

1− x

a3 = 1 + x + x2 + x3 =
1− x4

1− x

a4 = 1 + x + x2 + x3 + x4 =
1− x5

1− x

2b1 =
1

1− x2

3b2 =
1

1− x3

4b3 =
1

1− x4

5b4 =
1

1− x5

Multiplying all of the individual generating functions together, we get
that the generating function is: 1

(1−x)4
. You can choose to find the x19

coefficient in many ways. You should get 1540 an your answer.

14. Since the partitions are ordered, more complexities come into play.
Think about splitting the partitions in terms of the number of elements
that it has. If it has 0 elements in it (0 1’s and 2’s), then there is only
1 way to do it. If it has 1 element in it (1 1 or 1 2), then there is only
1 way to make a 1 and one way to make a 2, so the generating functon
for this part is (x + x2). It the partition has 2 elements in it, the
generating function is (x + x2)2 since we care about the order that we
choose the 1 and the 2 in. So, you can now begin to see the pattern.
We add the generating functions together since we were considering
the partitions as a whole. So the generating function is:

1 + (x + x2) + (x + x2)2 + ... =
1

1− x− x2
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Now we must do the same thing for the second part. So this generating
function is the same as the previous one, but instead of having x + x2

repeat over and over, we have (x3 + x4 + x5 + ...) that repeats over
and over. Also, using no numbers is out of the question since we are
looking at n+2 which must always have a partition. This is because all
of the partitions that we are counting are ordered. So this generating
function is:

(x3 + x4 + x5 + ...) + (x3 + x4 + x5 + ...)2 + ...

=
x2

1−x

1− x2

1−x

=
x2

1− x− x2

This is the sequence shifted over two since we are looking at n+2. So we
must divide by x2 to get our desired generating function for the second
part. Since the generating functions are equal, the two quantities that
we want to compare are equal. As a side note, this generating function
is the generating function for the Fibonacci sequence.

15. The generating function for number of partitions that aren’t multiples
of 3 are: ∏∞

n=1
1

1−xn∏∞
n=1

1
1−x3n

The genertaint function for the number of partitions of n where there
are at most 2 parts is:

(1 + x + x2)(1 + x2 + x4)(1 + x3 + x6)...

=
1− x3

1− x

1− x6

1− x2

1− x9

1− x3

=

∏∞
n=1

1
1−xn∏∞

n=1
1

1−x3n
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